替罪羊樹論文其中一個作者,Ronald Linn Rivest,同時也是RSA加密算法的R
替罪羊樹是一種不需要旋轉的平衡樹,它會要求使用者給定一個\(\alpha\)值,其值介於0.5到1之間,\(\alpha\)越大,插入就越快,查詢就越慢,實驗發現\(\alpha\)介於0.55~0.75是最佳的,但是具體的值要看使用者的要求
其平衡滿足:
1.
\(\alpha*size(o) \le size(o \to left)\)
\(\alpha*size(o) \le size(o \to right)\)
2.
\(deep(o) \le log_{1/\alpha} (size(tree))\)
當插入節點導致條件2.不滿足時,會往上回溯到第一個不滿足的節點,然後重建這顆節點的子樹成為完美平衡的二元樹
刪除可以用一般的BST刪除法,當不滿足條件時往上回溯到最先不滿足的節點,重建子樹,也可以懶惰刪除,先設立一個標記, 要刪除這個節點就把它做記號,當\(\alpha\)*全部的節點數量>實際上存在的節點數量,就重建這顆子樹
本文提供一般刪除的方法
其實替罪羊樹的節點是不需要記錄其size的,因為若需要重建,求得size的時間複雜度與重建的時間複雜度相等,這裡為了支援其它有如rank等操作才將size域附加在節點中
插入刪除的均攤時間複雜度為\(\ord{logN}\),相較之下朝鮮樹只是他的劣質仿冒品,其複雜度證明請參考此論文
以下為模板:
這裡也提供不需要記錄節點大小(size)的平衡方式,相對的一些需要用到附加size域的函數將不能被使用,但插入刪除的效率不變
如果編譯發現沒有__lg()這個函數的話,請在程式碼開頭附上這份code:
沒有留言:
張貼留言