替罪羊樹是一種不需要旋轉的平衡樹,它會要求使用者給定一個\alpha值,其值介於0.5到1之間,\alpha越大,插入就越快,查詢就越慢,實驗發現\alpha介於0.55~0.75是最佳的,但是具體的值要看使用者的要求
其平衡滿足:
1.
\alpha*size(o) \le size(o \to left)
\alpha*size(o) \le size(o \to right)
2.
deep(o) \le log_{1/\alpha} (size(tree))
當插入節點導致條件2.不滿足時,會往上回溯到第一個不滿足的節點,然後重建這顆節點的子樹成為完美平衡的二元樹
刪除可以用一般的BST刪除法,當不滿足條件時往上回溯到最先不滿足的節點,重建子樹,也可以懶惰刪除,先設立一個標記, 要刪除這個節點就把它做記號,當\alpha*全部的節點數量>實際上存在的節點數量,就重建這顆子樹
本文提供一般刪除的方法
其實替罪羊樹的節點是不需要記錄其size的,因為若需要重建,求得size的時間複雜度與重建的時間複雜度相等,這裡為了支援其它有如rank等操作才將size域附加在節點中
插入刪除的均攤時間複雜度為\ord{logN},相較之下朝鮮樹只是他的劣質仿冒品,其複雜度證明請參考此論文
以下為模板:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef SCAPEGOAT_TREE | |
#define SCAPEGOAT_TREE | |
#include<cmath> | |
#include<algorithm> | |
template<typename T> | |
class scapegoat_tree{ | |
private: | |
struct node{ | |
node *ch[2]; | |
int s; | |
T data; | |
node(const T&d):s(1),data(d){} | |
node():s(0){ch[0]=ch[1]=this;} | |
}*nil,*root,t; | |
const double alpha,loga; | |
int maxn; | |
inline bool isbad(node*o){ | |
return o->ch[0]->s>alpha*o->s||o->ch[1]->s>alpha*o->s; | |
} | |
node *flatten(node *x,node *y){ | |
if(!x->s)return y; | |
x->ch[1]=flatten(x->ch[1],y); | |
return flatten(x->ch[0],x); | |
} | |
node *build(node *x,int n){ | |
if(!n){ | |
x->ch[0]=nil; | |
return x; | |
} | |
node *y=build(x,n/2); | |
node *z=build(y->ch[1],n-1-n/2); | |
y->ch[1]=z->ch[0]; | |
z->ch[0]=y; | |
y->s=y->ch[0]->s+y->ch[1]->s+1; | |
return z; | |
} | |
bool insert(node *&o,const T&data,int dp){ | |
if(!o->s){ | |
o=new node(data); | |
o->ch[0]=o->ch[1]=nil; | |
return dp<=0; | |
} | |
++o->s; | |
if(insert(o->ch[o->data<data],data,--dp)){ | |
if(!isbad(o))return 1; | |
o=build(flatten(o,&t),o->s)->ch[0]; | |
}return 0; | |
} | |
inline void success_erase(node *&o){ | |
node *t=o; | |
o=o->ch[0]->s?o->ch[0]:o->ch[1]; | |
delete t; | |
} | |
bool erase(node *&o,const T&data){ | |
if(!o->s)return 0; | |
if(o->data==data){ | |
if(!o->ch[0]->s||!o->ch[1]->s)success_erase(o); | |
else{ | |
--o->s; | |
node **t=&o->ch[1]; | |
for(;(*t)->ch[0]->s;t=&(*t)->ch[0])(*t)->s--; | |
o->data=(*t)->data; | |
success_erase(*t); | |
}return 1; | |
}else if(erase(o->ch[o->data<data],data)){ | |
--o->s;return 1; | |
}else return 0; | |
} | |
void clear(node *&p){ | |
if(p->s)clear(p->ch[0]),clear(p->ch[1]),delete p; | |
} | |
public: | |
scapegoat_tree(const double&d=0.75):nil(new node),root(nil),alpha(d),loga(log2(1.0/d)),maxn(1){} | |
~scapegoat_tree(){clear(root),delete nil;} | |
inline void clear(){clear(root),root=nil;maxn=1;} | |
inline void insert(const T&data){ | |
insert(root,data,std::__lg(maxn)/loga); | |
if(root->s>maxn)maxn=root->s; | |
} | |
inline bool erase(const T&data){ | |
bool d=erase(root,data); | |
if(root->s<alpha*maxn)rebuild(); | |
return d; | |
} | |
inline bool find(const T&data){ | |
node *o=root; | |
while(o->s&&o->data!=data)o=o->ch[o->data<data]; | |
return o->s; | |
} | |
inline int rank(const T&data){ | |
int cnt=0; | |
for(node *o=root;o->s;) | |
if(o->data<data)cnt+=o->ch[0]->s+1,o=o->ch[1]; | |
else o=o->ch[0]; | |
return cnt; | |
} | |
inline const T&kth(int k){ | |
for(node *o=root;;) | |
if(k<=o->ch[0]->s)o=o->ch[0]; | |
else if(k==o->ch[0]->s+1)return o->data; | |
else k-=o->ch[0]->s+1,o=o->ch[1]; | |
} | |
inline const T&operator[](int k){ | |
return kth(k); | |
} | |
inline const T&preorder(const T&data){ | |
node *x=root,*y=0; | |
while(x->s) | |
if(x->data<data)y=x,x=x->ch[1]; | |
else x=x->ch[0]; | |
if(y)return y->data; | |
return data; | |
} | |
inline const T&successor(const T&data){ | |
node *x=root,*y=0; | |
while(x->s) | |
if(data<x->data)y=x,x=x->ch[0]; | |
else x=x->ch[1]; | |
if(y)return y->data; | |
return data; | |
} | |
inline void rebuild(){root=build(flatten(root,&t),maxn=root->s)->ch[0];} | |
inline int size(){return root->s;} | |
}; | |
#endif |
這裡也提供不需要記錄節點大小(size)的平衡方式,相對的一些需要用到附加size域的函數將不能被使用,但插入刪除的效率不變
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef NOSIZE_SCAPEGOAT_TREE | |
#define NOSIZE_SCAPEGOAT_TREE | |
#include<cmath> | |
#include<algorithm> | |
template<typename T> | |
class scapegoat_tree{ | |
private: | |
struct node{ | |
node *ch[2]; | |
T data; | |
node(const T&d):data(d){ch[0]=ch[1]=0;} | |
node(){} | |
}*root,t; | |
const double alpha,loga; | |
int maxn,n; | |
int size(node *o){ | |
return o?size(o->ch[0])+size(o->ch[1])+1:0; | |
} | |
node *flatten(node *x,node *y){ | |
if(!x)return y; | |
x->ch[1]=flatten(x->ch[1],y); | |
return flatten(x->ch[0],x); | |
} | |
node *build(node *x,int n){ | |
if(!n){ | |
x->ch[0]=0; | |
return x; | |
} | |
node *y=build(x,n/2); | |
node *z=build(y->ch[1],n-1-n/2); | |
y->ch[1]=z->ch[0]; | |
z->ch[0]=y; | |
return z; | |
} | |
int insert(node *&o,const T&data,int dp){ | |
if(!o){ | |
o=new node(data); | |
return dp<=0; | |
} | |
bool d=o->data<data; | |
int ds1=insert(o->ch[d],data,--dp); | |
if(ds1){ | |
int ds2=size(o->ch[!d]),n=ds1+ds2+1; | |
if(ds1<=alpha*n&&ds2<=alpha*n)return n; | |
o=build(flatten(o,&t),n)->ch[0]; | |
}return 0; | |
} | |
inline void success_erase(node *&o){ | |
node *t=o; | |
o=o->ch[0]?o->ch[0]:o->ch[1]; | |
delete t; | |
} | |
bool erase(node *&o,const T&data){ | |
if(!o)return 0; | |
if(o->data==data){ | |
if(!o->ch[0]||!o->ch[1])success_erase(o); | |
else{ | |
node **t=&o->ch[1]; | |
for(;(*t)->ch[0];t=&(*t)->ch[0]); | |
o->data=(*t)->data; | |
success_erase(*t); | |
}return 1; | |
}else return erase(o->ch[o->data<data],data); | |
} | |
void clear(node *&p){ | |
if(p)clear(p->ch[0]),clear(p->ch[1]),delete p; | |
} | |
public: | |
scapegoat_tree(const double&d=0.75):root(0),alpha(d),loga(log2(1.0/d)),maxn(1),n(0){} | |
~scapegoat_tree(){clear(root);} | |
inline void clear(){clear(root),root=0;maxn=1,n=0;} | |
inline void insert(const T&data){ | |
insert(root,data,std::__lg(maxn)/loga); | |
if(++n>maxn)maxn=n; | |
} | |
inline bool erase(const T&data){ | |
bool d=erase(root,data); | |
if(d&&--n<alpha*maxn)rebuild(); | |
return d; | |
} | |
inline bool find(const T&data){ | |
node *o=root; | |
while(o&&o->data!=data)o=o->ch[o->data<data]; | |
return o; | |
} | |
inline const T& min(){ | |
node *o=root; | |
while(o->ch[0])o=o->ch[0]; | |
return o->data; | |
} | |
inline const T& max(){ | |
node *o=root; | |
while(o->ch[1])o=o->ch[1]; | |
return o->data; | |
} | |
inline const T&preorder(const T&data){ | |
node *x=root,*y=0; | |
while(x) | |
if(x->data<data)y=x,x=x->ch[1]; | |
else x=x->ch[0]; | |
if(y)return y->data; | |
return data; | |
} | |
inline const T&successor(const T&data){ | |
node *x=root,*y=0; | |
while(x) | |
if(data<x->data)y=x,x=x->ch[0]; | |
else x=x->ch[1]; | |
if(y)return y->data; | |
return data; | |
} | |
inline void rebuild(){root=build(flatten(root,&t),maxn=n)->ch[0];} | |
inline int size(){return n;} | |
}; | |
#endif |
如果編譯發現沒有__lg()這個函數的話,請在程式碼開頭附上這份code:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
namespace std{ | |
inline int __lg(int n){//Precondition: n >= 0 | |
int k=0; | |
for(;n!=0;n>>=1)++k; | |
return k?--k:1; | |
} | |
} |