插入和刪除的時間複雜度跟Randomized binary search tree一樣,是在演算法競賽中最適合使用的平衡樹。
因為 分裂/合併式 Treap 可以完全被 分裂/合併式 Randomized binary search tree取代,故不提供
做法1,完全依靠旋轉進行平衡(刪除速度較慢):
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef TREAP | |
#define TREAP | |
template<typename T> | |
class treap{ | |
private: | |
struct node{ | |
T data; | |
unsigned fix; | |
int size; | |
node *ch[2]; | |
node(const T&d):data(d),size(1){} | |
node():size(0){ch[0]=ch[1]=this;} | |
}*nil,*root; | |
unsigned x; | |
inline unsigned ran(){ | |
return x=x*0xdefaced+1; | |
} | |
inline void rotate(node *&a,bool d){ | |
node *b=a; | |
a=a->ch[!d]; | |
a->size=b->size; | |
b->ch[!d]=a->ch[d]; | |
a->ch[d]=b; | |
b->size=b->ch[0]->size+b->ch[1]->size+1; | |
} | |
void insert(node *&o,const T &data){ | |
if(!o->size){ | |
o=new node(data),o->fix=ran(); | |
o->ch[0]=o->ch[1]=nil; | |
}else{ | |
o->size++; | |
bool d=o->data<data; | |
insert(o->ch[d],data); | |
if(o->ch[d]->fix>o->fix)rotate(o,!d); | |
} | |
} | |
bool success_erase(node *&o){ | |
if(!o->ch[0]->size||!o->ch[1]->size){ | |
node *t=o; | |
o=o->ch[0]->size?o->ch[0]:o->ch[1]; | |
delete t; | |
}else{ | |
o->size--; | |
bool d=o->ch[0]->fix>o->ch[1]->fix; | |
rotate(o,d); | |
success_erase(o->ch[d]); | |
} | |
return 1; | |
} | |
bool erase(node *&o,const T &data){ | |
if(!o->size)return 0; | |
if(o->data==data)return success_erase(o); | |
if(erase(o->ch[o->data<data],data)){ | |
o->size--;return 1; | |
}else return 0; | |
} | |
void clear(node *&o){ | |
if(o->size)clear(o->ch[0]),clear(o->ch[1]),delete o; | |
} | |
public: | |
treap(unsigned s=20150119):nil(new node),root(nil),x(s){} | |
~treap(){clear(root),delete nil;} | |
inline void clear(){clear(root),root=nil;} | |
inline void insert(const T &data){ | |
insert(root,data); | |
} | |
inline bool erase(const T &data){ | |
return erase(root,data); | |
} | |
inline bool find(const T&data){ | |
for(node *o=root;o->size;) | |
if(o->data==data)return 1; | |
else o=o->ch[o->data<data]; | |
return 0; | |
} | |
inline int rank(const T&data){ | |
int cnt=0; | |
for(node *o=root;o->size;) | |
if(o->data<data)cnt+=o->ch[0]->size+1,o=o->ch[1]; | |
else o=o->ch[0]; | |
return cnt; | |
} | |
inline const T&kth(int k){ | |
for(node *o=root;;) | |
if(k<=o->ch[0]->size)o=o->ch[0]; | |
else if(k==o->ch[0]->size+1)return o->data; | |
else k-=o->ch[0]->size+1,o=o->ch[1]; | |
} | |
inline const T&operator[](int k){ | |
return kth(k); | |
} | |
inline const T&preorder(const T&data){ | |
node *x=root,*y=0; | |
while(x->size) | |
if(x->data<data)y=x,x=x->ch[1]; | |
else x=x->ch[0]; | |
if(y)return y->data; | |
return data; | |
} | |
inline const T&successor(const T&data){ | |
node *x=root,*y=0; | |
while(x->size) | |
if(data<x->data)y=x,x=x->ch[0]; | |
else x=x->ch[1]; | |
if(y)return y->data; | |
return data; | |
} | |
inline int size(){return root->size;} | |
}; | |
#endif |
作法2,刪除時合併左右子樹(刪除速度較快):
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef TREAP | |
#define TREAP | |
template<typename T> | |
class treap{ | |
private: | |
struct node{ | |
T data; | |
unsigned fix; | |
int s; | |
node *ch[2]; | |
node(const T&d):data(d),s(1){} | |
node():s(0){ch[0]=ch[1]=this;} | |
}*nil,*root; | |
unsigned x; | |
inline unsigned ran(){ | |
return x=x*0xdefaced+1; | |
} | |
inline void rotate(node *&a,bool d){ | |
node *b=a; | |
a=a->ch[!d]; | |
a->s=b->s; | |
b->ch[!d]=a->ch[d]; | |
a->ch[d]=b; | |
b->s=b->ch[0]->s+b->ch[1]->s+1; | |
} | |
void insert(node *&o,const T &data){ | |
if(!o->s){ | |
o=new node(data),o->fix=ran(); | |
o->ch[0]=o->ch[1]=nil; | |
}else{ | |
o->s++; | |
bool d=o->data<data; | |
insert(o->ch[d],data); | |
if(o->ch[d]->fix>o->fix)rotate(o,!d); | |
} | |
} | |
node *merge(node *a,node *b){ | |
if(!a->s||!b->s)return a->s?a:b; | |
if(a->fix>b->fix){ | |
a->ch[1]=merge(a->ch[1],b); | |
a->s=a->ch[0]->s+a->ch[1]->s+1; | |
return a; | |
}else{ | |
b->ch[0]=merge(a,b->ch[0]); | |
b->s=b->ch[0]->s+b->ch[1]->s+1; | |
return b; | |
} | |
} | |
bool erase(node *&o,const T &data){ | |
if(!o->s)return 0; | |
if(o->data==data){ | |
node *t=o; | |
o=merge(o->ch[0],o->ch[1]); | |
delete t; | |
return 1; | |
} | |
if(erase(o->ch[o->data<data],data)){ | |
o->s--;return 1; | |
}else return 0; | |
} | |
void clear(node *&o){ | |
if(o->s)clear(o->ch[0]),clear(o->ch[1]),delete o; | |
} | |
public: | |
treap(unsigned s=20150119):nil(new node),root(nil),x(s){} | |
~treap(){clear(root),delete nil;} | |
inline void clear(){clear(root),root=nil;} | |
inline void insert(const T &data){ | |
insert(root,data); | |
} | |
inline bool erase(const T &data){ | |
return erase(root,data); | |
} | |
inline bool find(const T&data){ | |
for(node *o=root;o->s;) | |
if(o->data==data)return 1; | |
else o=o->ch[o->data<data]; | |
return 0; | |
} | |
inline int rank(const T&data){ | |
int cnt=0; | |
for(node *o=root;o->s;) | |
if(o->data<data)cnt+=o->ch[0]->s+1,o=o->ch[1]; | |
else o=o->ch[0]; | |
return cnt; | |
} | |
inline const T&kth(int k){ | |
for(node *o=root;;) | |
if(k<=o->ch[0]->s)o=o->ch[0]; | |
else if(k==o->ch[0]->s+1)return o->data; | |
else k-=o->ch[0]->s+1,o=o->ch[1]; | |
} | |
inline const T&operator[](int k){ | |
return kth(k); | |
} | |
inline const T&preorder(const T&data){ | |
node *x=root,*y=0; | |
while(x->s) | |
if(x->data<data)y=x,x=x->ch[1]; | |
else x=x->ch[0]; | |
if(y)return y->data; | |
return data; | |
} | |
inline const T&successor(const T&data){ | |
node *x=root,*y=0; | |
while(x->s) | |
if(data<x->data)y=x,x=x->ch[0]; | |
else x=x->ch[1]; | |
if(y)return y->data; | |
return data; | |
} | |
inline int size(){return root->s;} | |
}; | |
#endif |
沒有留言:
張貼留言