跟一般的平衡樹一樣,靠左旋和右旋維持其平衡
他的精華來自於maintain函數
聽說是均攤\ord 1的,傳說中速度僅次於紅黑樹
coding複雜度跟Treap差不多,比AVL Tree好寫
平衡調件為: 每顆子樹的大小不小於其兄弟子樹的大小
我只提供模板,這裡有詳細的介紹
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef SIZE_BALANCED_TREE | |
#define SIZE_BALANCED_TREE | |
template<typename T> | |
class sb_tree{ | |
private: | |
struct node{ | |
node *ch[2]; | |
int s; | |
T data; | |
node(const T&d):s(1),data(d){} | |
node():s(0){ch[0]=ch[1]=this;} | |
}*nil,*root; | |
inline void rotate(node *&a,bool d){ | |
node *b=a->ch[!d]; | |
a->ch[!d]=b->ch[d]; | |
b->ch[d]=a; | |
b->s=a->s; | |
a->s=a->ch[0]->s+a->ch[1]->s+1; | |
a=b; | |
} | |
void maintain(node *&o,bool d){ | |
if(o->ch[d]->ch[d]->s>o->ch[!d]->s){ | |
rotate(o,!d); | |
}else if(o->ch[d]->ch[!d]->s>o->ch[!d]->s){ | |
rotate(o->ch[d],d); | |
rotate(o,!d); | |
}else return; | |
maintain(o->ch[1],1); | |
maintain(o->ch[0],0); | |
maintain(o,1); | |
maintain(o,0); | |
} | |
void insert(node *&o,const T&data){ | |
if(!o->s){ | |
o=new node(data); | |
o->ch[0]=o->ch[1]=nil; | |
}else{ | |
++o->s; | |
bool d=o->data<data; | |
insert(o->ch[d],data); | |
maintain(o,d); | |
} | |
} | |
inline void success_erase(node *&o){ | |
node *t=o; | |
o=o->ch[0]->s?o->ch[0]:o->ch[1]; | |
delete t; | |
} | |
bool erase(node *&o,const T&data){ | |
if(!o->s)return 0; | |
if(o->data==data){ | |
if(!o->ch[0]->s||!o->ch[1]->s)success_erase(o); | |
else{ | |
--o->s; | |
node **t=&o->ch[1]; | |
for(;(*t)->ch[0]->s;t=&(*t)->ch[0])(*t)->s--; | |
o->data=(*t)->data; | |
success_erase(*t); | |
}return 1; | |
}else if(erase(o->ch[o->data<data],data)){ | |
--o->s;return 1; | |
}else return 0; | |
} | |
void clear(node *&o){ | |
if(o->s)clear(o->ch[0]),clear(o->ch[1]),delete o; | |
} | |
public: | |
sb_tree():nil(new node),root(nil){} | |
~sb_tree(){clear(root),delete nil;} | |
inline void clear(){clear(root),root=nil;} | |
inline void insert(const T&data){ | |
insert(root,data); | |
} | |
inline bool erase(const T&data){ | |
return erase(root,data); | |
} | |
inline bool find(const T&data){ | |
node *o=root; | |
while(o->s&&o->data!=data)o=o->ch[o->data<data]; | |
return o->s; | |
} | |
inline int rank(const T&data){ | |
int cnt=0; | |
for(node *o=root;o->s;) | |
if(o->data<data)cnt+=o->ch[0]->s+1,o=o->ch[1]; | |
else o=o->ch[0]; | |
return cnt; | |
} | |
inline const T&kth(int k){ | |
for(node *o=root;;) | |
if(k<=o->ch[0]->s)o=o->ch[0]; | |
else if(k==o->ch[0]->s+1)return o->data; | |
else k-=o->ch[0]->s+1,o=o->ch[1]; | |
} | |
inline const T&operator[](int k){ | |
return kth(k); | |
} | |
inline const T&preorder(const T&data){ | |
node *x=root,*y=0; | |
while(x->s) | |
if(x->data<data)y=x,x=x->ch[1]; | |
else x=x->ch[0]; | |
if(y)return y->data; | |
return data; | |
} | |
inline const T&successor(const T&data){ | |
node *x=root,*y=0; | |
while(x->s) | |
if(data<x->data)y=x,x=x->ch[0]; | |
else x=x->ch[1]; | |
if(y)return y->data; | |
return data; | |
} | |
inline int size(){return root->s;} | |
}; | |
#endif |
因為自己寫的速度有點慢,可以參考這邊一些大神寫的code
沒有留言:
張貼留言