動態樹,一種支持斷邊、連邊的資料結構(要保證是樹或森林),可以維護路徑、但不能維護子樹。
類似於樹鏈剖分(建議先學完樹鏈剖分,再學LCT)。
只不過樹鏈剖分的輕重邊是根據子樹大小而決定的,這棵樹只能是靜態的。
而LCT中的“輕重邊”是根據最後一次操作決定的,最後一次處理了x這個點,那麼從x到根的路徑就是重鏈(每個父親只與一個兒子的連邊為重邊)。
用splay來維護每一條重鏈,以點的深度為關鍵字,即splay中的每個點左兒子深度都比他小,右兒子的深度都比他大(若只有一個點,那麼這個點單獨是一棵splay)。
如果還不知道splay tree的可以參考這裡
splay tree及其節點的一些函數:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include<vector> | |
struct splay_tree{ | |
int ch[2],pa;/*子節點跟父母*/ | |
bool rev;/*反轉的懶惰標記*/ | |
splay_tree():pa(0),rev(0){ch[0]=ch[1]=0;} | |
}; | |
std::vector<splay_tree> node; | |
/* | |
有的時候用vector會TLE,要注意 | |
這邊以node[0]作為null節點 | |
*/ | |
inline bool isroot(int x){/*判斷是否為這棵splay tree的根*/ | |
return node[node[x].pa].ch[0]!=x&&node[node[x].pa].ch[1]!=x; | |
} | |
inline void down(int x){/*懶惰標記下推*/ | |
if(node[x].rev){ | |
if(node[x].ch[0])node[node[x].ch[0]].rev^=1; | |
if(node[x].ch[1])node[node[x].ch[1]].rev^=1; | |
std::swap(node[x].ch[0],node[x].ch[1]); | |
node[x].rev^=1; | |
} | |
} | |
void push_down(int x){/*將所有祖先的懶惰標記下推*/ | |
if(!isroot(x))push_down(node[x].pa); | |
down(x); | |
} | |
inline void up(int x){}/*將子節點的資訊向上更新*/ | |
inline void rotate(int x){/*旋轉,會自行判斷轉的方向*/ | |
int y=node[x].pa,z=node[y].pa,d=(node[y].ch[1]==x); | |
node[x].pa=z; | |
if(!isroot(y))node[z].ch[node[z].ch[1]==y]=x; | |
node[y].ch[d]=node[x].ch[d^1]; | |
node[node[y].ch[d]].pa=y; | |
node[y].pa=x,node[x].ch[d^1]=y; | |
up(y); | |
up(x); | |
} | |
inline void splay(int x){/*將節點x伸展到所在splay tree的根*/ | |
push_down(x); | |
while(!isroot(x)){ | |
int y=node[x].pa; | |
if(!isroot(y)){ | |
int z=node[y].pa; | |
if((node[z].ch[0]==y)^(node[y].ch[0]==x))rotate(x); | |
else rotate(y); | |
} | |
rotate(x); | |
} | |
} |
定義:
- Preferred child:
如果一個點是他父親結點的所有兒子中最後被訪問的,那麼他是他父親的Preferred child。
每個點最多有一個Preferred child。如果x結點是最後被訪問的點,那麼他沒有Preferred child。 - Preferred edge:
每個點到自己的Preferred child的邊叫Preferred edge(相當於樹鏈剖分中的重邊) - Preferred path:
由Preferred edge組成的鏈叫Preferred path(相當於樹鏈剖分的重鏈)
我們用操作access(x)來表示訪問節點x為LCT的最基礎操作,使x到根結點的路徑成為重鏈。
如上圖,粗邊為重邊。
首先把x旋到他所在的splay的根部。
因為當前的x點是最後一個被訪問的點,所以他沒有Preferred child,因此要把右兒子與他斷開,右兒子成為新的一條鏈。
x的父親是y,把y旋到他所在splay的根結點,把此時y的右兒子與他斷開,把x連過來即可,相當於合併y和x所在的splay。
然後,再找y的父親,合併y與y的父親所在的splay,一直到根結束。
最終,x到根結點的路徑成為新的Preferred edge,而曾經的Preferred child都被拋棄。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline int access(int x){ | |
int last=0; | |
while(x){ | |
splay(x); | |
node[x].ch[1]=last; | |
up(x); | |
last=x; | |
x=node[x].pa; | |
} | |
return last;/*回傳access後splay tree的根*/ | |
} |
make_root(x):
將x設為其所在的樹的根
首先access(x),這樣x與根結點處在同一棵splay中。
設a=access(x),而a是splay tree的根,因為要讓x成為整棵樹的根,所以x的深度要最小,我們只要在a上加一個區間反轉的標記rev就可以完成。
這裡提供兩種方式,最後都會把節點x轉到splay tree根的位置(這很重要)
1.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void make_root(int x){ | |
access(x),splay(x); | |
node[x].rev^=1; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void make_root(int x){ | |
node[access(x)].rev^=1; | |
splay(x); | |
} |
連接x與y所在的兩棵樹。
先判斷是否在同一棵splay tree裡,如果是的話就不做任何事
首先Makeroot(x),x就成為了他所在樹的根。
然後直接把x的父親賦值為y即可。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void link(int x,int y){ | |
make_root(x); | |
node[x].pa=y; | |
} |
斷開x與y所相連的邊。
首先Makeroot(x),然後Access(y),此時x與y在同一棵splay中,再Splay(y),此時x是y的左兒子,然後將其左兒子及左兒子的父母設成空節點即可。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void cut(int x,int y){ | |
make_root(x); | |
access(y); | |
splay(y); | |
node[y].ch[0]=0; | |
node[x].pa=0; | |
} |
跟cut類似,斷掉x和其父親節點之間的邊。首先access節點x。然後讓x旋轉到所在輔助樹的根節點上。斷掉左子樹。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void cut_parents(int x){ | |
access(x); | |
splay(x); | |
node[node[x].ch[0]].pa=0; | |
node[x].ch[0]=0; | |
} |
尋找點x在所在樹的根節點。這個操作很簡單,我們只要對x做一次access操作,這樣x和它的根就應該在一個splay中了。那麼此時的根就應該是這個splay最左邊的節點。
因為是splay tree,所以在搜尋完後仍要進行splay操作
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline int find_root(int x){ | |
x=access(x); | |
while(node[x].ch[0])x=node[x].ch[0]; | |
splay(x); | |
return x; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline int query(int u,int v){ | |
/* | |
傳回uv路徑splay tree的根結點 | |
這種寫法無法求LCA | |
*/ | |
make_root(u); | |
return access(v); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline int query_lca(int u,int v){ | |
/*假設求鏈上點權的總和,sum是子樹的權重和,data是節點的權重*/ | |
access(u); | |
int lca=access(v); | |
splay(u); | |
if(u==lca){ | |
return node[lca].data+node[node[lca].ch[1]].sum; | |
}else{ | |
return node[lca].data+node[node[lca].ch[1]].sum+node[u].sum; | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void change(int x,int b){ | |
splay(x); | |
node[x].data=b; | |
up(x); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
struct EDGE{ | |
int a,b,w; | |
}e[10005]; | |
int n; | |
std::vector<std::pair<int ,int > >G[10005]; | |
/*first表示子節點,second表示邊的編號*/ | |
int pa[10005],edge_node[10005]; | |
/*pa是父母節點,暫存用的,edge_node是每個編被存在哪個點裡面的陣列*/ | |
inline void bfs(int root){ | |
/*在建構的時候把每個點都設成一個splay tree,不會壞掉*/ | |
std::queue<int > q; | |
for(int i=1;i<=n;++i)pa[i]=0; | |
q.push(root); | |
while(q.size()){ | |
int u=q.front(); | |
q.pop(); | |
for(int i=0;i<(int)G[u].size();++i){ | |
int v=G[u][i].first; | |
if(v!=pa[u]){ | |
pa[v]=u; | |
node[v].pa=u; | |
node[v].data=e[G[u][i].second].w; | |
edge_node[G[u][i].second]=v; | |
up(v); | |
q.push(v); | |
} | |
} | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void access(int x,bool is=0){/*is=0就是一般的access*/ | |
int last=0; | |
while(x){ | |
splay(x); | |
if(is&&!node[x].pa){ | |
printf("%d\n",max(node[last].ma,node[node[x].ch[1]].ma)); | |
} | |
node[x].ch[1]=last; | |
up(x); | |
last=x; | |
x=node[x].pa; | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inline void query_edge(int u,int v){ | |
access(u); | |
access(v,1); | |
} |