可以利用堆疊+tarjan算法快速地找出那些點是割點和雙連通分量
以下提供模板:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include<vector> | |
#include<algorithm> | |
#define N 1005 | |
std::vector<int> G[N];// 1-base | |
std::vector<int> bcc[N];//存每塊雙連通分量的點 | |
int low[N],vis[N],Time; | |
int bcc_id[N],bcc_cnt;// 1-base | |
bool is_cut[N];//是否為割點,割點的bcc_id沒意義 | |
int st[N],top; | |
void dfs(int u,int pa=-1){//u當前點,pa父親 | |
int v,child=0; | |
low[u]=vis[u]=++Time; | |
st[top++]=u; | |
for(size_t i=0;i<G[u].size();++i){ | |
if(!vis[v=G[u][i]]){ | |
dfs(v,u),++child; | |
low[u]=std::min(low[u],low[v]); | |
if(vis[u]<=low[v]){ | |
is_cut[u]=1; | |
bcc[++bcc_cnt].clear(); | |
int t; | |
do{ | |
bcc_id[t=st[--top]]=bcc_cnt; | |
bcc[bcc_cnt].push_back(t); | |
}while(t!=v); | |
bcc_id[u]=bcc_cnt; | |
bcc[bcc_cnt].push_back(u); | |
} | |
}else if(vis[v]<vis[u]&&v!=pa)//反向邊 | |
low[u]=std::min(low[u],vis[v]); | |
} | |
if(pa==-1&&child<2)is_cut[u]=0;//u是dfs樹的根要特判 | |
} | |
inline void bcc_init(int n){ | |
Time=bcc_cnt=top=0; | |
for(int i=1;i<=n;++i){ | |
G[i].clear(); | |
vis[i]=0; | |
is_cut[i]=0; | |
bcc_id[i]=0; | |
} | |
} |
沒有留言:
張貼留言