對於每筆詢問,我們可以利用剛剛求得的倍增表,在\ord{MAX\_LOG}的時間在線查詢
先將要查詢的a,b兩點較深的點移至較淺的點的深度,之後二分搜LCA的位置
附上模板:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#define MAXN 100000 | |
#define MAX_LOG 17 | |
typedef vector<int >::iterator VIT; | |
int pa[MAX_LOG+1][MAXN+5],dep[MAXN+5]; | |
vector<int >G[MAXN+5]; | |
void dfs(int x,int p){ | |
pa[0][x]=p; | |
for(int i=0;i+1<MAX_LOG;++i){ | |
pa[i+1][x]=pa[i][pa[i][x]]; | |
} | |
for(VIT i=G[x].begin();i!=G[x].end();++i){ | |
if(*i==p)continue; | |
dep[*i]=dep[x]+1; | |
dfs(*i,x); | |
} | |
} | |
inline int find_lca(int a,int b){ | |
if(dep[a]>dep[b])swap(a,b); | |
for(int i=dep[b]-dep[a],k=0;i;i/=2){ | |
if(i&1)b=pa[k][b]; | |
++k; | |
} | |
if(a==b)return a; | |
for(int i=MAX_LOG;i>=0;--i){ | |
if(pa[i][a]!=pa[i][b]){ | |
a=pa[i][a]; | |
b=pa[i][b]; | |
} | |
} | |
return pa[0][a]; | |
} |
沒有留言:
張貼留言